

Copia Internet: Internet:

Para o preparo de uma solução de KCl a 2,5 mM deve-se diluir uma solução estoque que está na concentração de 20 mM. Sabendo que o volume final que se deseja obter é de 40 mL e que o peso molecular de K = 39 e Cl = 35,5, as quantidades da solução estoque e do solvente necessárias para preparar a solução a 2,5 mM são, respectivamente, em mL:

- a) 2 e 38
- b) 5 e 35
- c) 8 e 32
- d) 10 e 30

02|

Para cultura de células, todos os frascos, pipetas e soluções que vão entrar em contato com o material biológico devem estar estéreis. Os meios de cultura podem conter compostos termolábeis, como vitaminas e proteínas.

Levando em consideração a composição do meio de cultura de células, o método de esterilização mais adequado para preservar seus componentes é:

- a) filtração
- b) calor seco
- c) centrifugação
- d) autoclavagem

03|

A totipotência celular pode ser definida como a capacidade de uma célula vegetal, já diferenciada, retomar seu estado meristemático e seguir nova via de diferenciação.

Na cultura in vitro, esse potencial pode ser ilustrado pelo seguinte exemplo:

- a) produção de metabólitos em vacúolos celulares
- b) expansão cotiledonar durante a germinação in vitro
- c) dispersão de células em suspensão a partir de um calo
- d) formação de um embrião a partir de um segmento de folha

04|

Nas técnicas de criopreservação baseadas no processo de vitrificação, o material é exposto a soluções crioprotetoras altamente concentradas ou dessecado por meio de corrente de ar ou exposição à sílica gel, antes da imersão em nitrogênio líquido.

O objetivo desses tratamentos é:

- a) dispensar a etapa de descongelamento
- b) aumentar a taxa de formação de calos
- c) reduzir a formação de cristais de gelo
- d) evitar a oxidação do material

05|

Para se esterilizar completamente e de maneira segura pinças de aço inox, deve-se autoclavar o material da seguinte forma:

- a) durante 24 horas
- b) durante 20 minutos
- c) mergulhado em álcool puro
- d) mergulhado em água milli-Q

06|

Um tecido isolado da planta-mãe perde sua identidade como parte de um órgão já diferenciado e funcional e passa a sofrer a influência do meio de cultura em que foi inoculado.

O principal fator que determina a natureza do processo regenerativo in vitro é:

- a) posição do tecido na planta doadora
- b) processo de descontaminação, que pode lesar os tecidos
- c) pré-tratamento que a planta-mãe tenha recebido na quarentena
- d) balanço de reguladores de crescimento a que está submetido o tecido

071

Os métodos de conservação de germoplasma vegetal in vitro caracterizam-se por utilizar:

- a) plantas completas
- b) congeladores a -80°C
- c) técnicas de cultura de tecidos
- d) principalmente, sementes viáveis

08|

A limpeza clonal, técnica que tem sido empregada com sucesso na eliminação de vírus, é amplamente usada para limpeza de plantas infectadas.

O procedimento utilizado para isso é:

- a) cultura de meristemas
- b) retirada de clones infectados
- c) clonagem de material descontaminado
- d) descontaminação de plantas propagadas e mantidas in vitro

09|

Em um laboratório de cultura de tecidos e células vegetais, são rotineiramente desenvolvidos procedimentos assépticos. Nesse contexto, a manutenção da assepsia de uma sala de incubação é favorecida pela:

- a) ausência de estantes
- b) presença de ventiladores
- c) presença de pias de lavagem
- d) ausência de aberturas externas

10

As plantas matrizes devem ser mantidas em casa de vegetação para o fornecimento dos explantes. Se forem trazidas de outro local, uma medida importante para evitar a contaminação externa é:

- a) aumentar os intervalos de rega
- b) deixar o material em quarentena
- c) fazer a aspersão da parte aérea com hipoclorito de sódio
- d) ampliar o fotoperíodo para aumentar a taxa fotossintética

11|

A variação induzida pelas condições de cultura e conservação *in vitro* é designada como variação somaclonal, tendo sido inicialmente observada em plantas obtidas por organogênese indireta e em culturas de células em suspensão.

A variação somaclonal apresenta a seguinte característica:

- a) impede a regeneração de plantas completas
- b) não resulta em variações fenotípicas significativas
- c) requer monitoramento em programas de conservação
- d) requer o sequenciamento do genoma para identificar os variantes

12

As culturas *in vitro* com crescimento organizado têm sido consideradas um sistema biológico bastante eficiente para a produção de metabólitos especiais *in vitro*. No entanto, as chances das culturas de órgãos serem usadas industrialmente são reduzidas, devido ao seguinte fator:

- a) crescimento lento desse tipo de sistema
- b) escassez de espécies aplicáveis a esses sistemas
- c) desinteresse das indústrias por produtos não patenteáveis
- d) escassez de substâncias de interesse produzidas por esses sistemas

Na sala de inoculação, deve haver instalação para saída de gás e para o uso do bico de Bunsen dentro da capela. Contudo, na fase de manipulação do material, o bico de Bunsen pode ser substituído, no processo de esterilização do material cirúrgico, pelo seguinte equipamento:

- a) estufa elétrica
- b) lâmpadas de U. V.
- c) autoclave horizontal
- d) esterilizadores elétricos

14

A hibridização somática é uma técnica *in vitro* com potencial para manipulação genética que utiliza o seguinte material botânico:

- a) embriões somáticos
- b) protoplastos isolados
- c) tecidos meristemáticos
- d) qualquer célula vegetal com totipotência

15

O uso de enzimas de restrição como ferramenta para a manipulação do DNA é possível pelo seguinte motivo:

- a) atuam na replicação do DNA, permitindo sua inserção no genoma da planta
- b) fazem a ligação do gene de interesse em um ponto específico do plasmídio
- c) cortam o DNA de qualquer espécie nas mesmas sequências de bases
- d) são produzidas pelas células vegetais transformadas

161

Diferentes tipos de equipamentos são utilizados em um laboratório e a correta identificação e utilização de cada um deles é fundamental para o desenvolvimento das atividades de pesquisa.

Assinale a alternativa que estabelece a correlação entre o equipamento e a sua função.

- a) pHmetro: mistura de reagentes em uma solução
- b) bico de Bunsen: aquecimento de líquidos inflamáveis
- c) centrífuga: aquecimento de soluções contendo solventes orgânicos
- d) dessecador: acondicionamento em atmosfera com baixo índice de umidade

17

A eletroforese é uma técnica utilizada para a separação de moléculas de acordo com seu peso molecular, podendo ser realizada em gel de agarose.

Se um pesquisador precisar preparar um gel de agarose a 2% (m/V), a quantidade, em gramas, de agarose necessária para preparar 50 mL de solução é:

- a) 1,0
- b) 2,0
- c) 2,5
- d) 5,0

18|

O microscópio óptico é formado por dois sistemas de lentes oculares e objetivas, que produzem a ampliação da imagem. Para a análise da imagem no microscópio, o procedimento correto, antes de encaixar a lente objetiva de 100x, é:

- a) aplicar uma gota de água sobre a lâmina
- b) aplicar óleo de imersão sobre a lâmina
- c) limpar a lâmina com um pano úmido
- d) limpar a lâmina com álcool

Ao se iniciar um trabalho de indução de regeneração in vitro de plantas, o primeiro passo deve ser:

- a) descontaminar o material a ser inoculado
- b) verificar se os componentes do meio de cultura estão esterilizados
- c) verificar qual será o pH do meio a ser utilizado para induzir a regeneração
- d) definir os balanços de fitorreguladores que serão fornecidos aos tecidos primários

20|

Para preparar 120 mL de uma solução de ácido clorídrico a 1 M, a partir de uma solução estoque 6 M, é necessário efetuar uma diluição da solução em água. Para isso, deve-se colocar em uma proveta:

- a) 100 mL de água e depois 20 mL de ácido
- b) 20 mL de ácido e depois 100 mL de água
- c) 20 mL de água e depois 100 mL de ácido
- d) 100 mL de ácido e depois 20 mL de água

21|

Linhagens desarmadas de Agrobacterium recebem essa denominação pelo seguinte motivo:

- a) não são capazes de replicar o plasmídio Ti
- b) possuem os genes de virulência e os oncogenes
- c) possuem os genes de virulência e não possuem os oncogenes
- d) não possuem os genes de virulência e não são capazes de causar tumores

22

Dentro do ambiente de um laboratório são encontrados diversos fatores de risco químico, físico e/ou biológico, que podem comprometer a saúde humana. A identificação desses fatores é fundamental para o desenvolvimento de práticas de biossegurança, a fim de prevenir, minimizar ou eliminar esses riscos, preservando a integridade daqueles que ali trabalham.

São fatores de risco biológico:

- a) parasitas, radiação e príons
- b) príons, toxinas e culturas de células
- c) solventes orgânicos, toxinas e radiação
- d) culturas de células, solventes orgânicos e parasitas

23|

São considerados exemplos de cultivos com crescimento organizado as seguintes culturas:

- a) embriões e pólen
- b) segmentos nodais e anteras
- c) raízes isoladas e meristemas
- d) ápices caulinares e protoplastos

24

Quando o cultivo vegetal não é viável, o uso de técnicas e estratégias biotecnológicas têm se mostrado uma ferramenta bastante útil para a produção de metabólitos de espécimes com propriedades de importância medicinal.

O alto rendimento de substâncias bioativas de interesse, por exemplo, pode ser obtido por meio de:

- a) exposição das plantas mantidas in vitro à estresses
- b) seleção de linhagens ou quimiotipos altamente produtores
- c) estabelecimento da cultura de calos ou de células em suspensão
- d) propagação in vitro de material com propriedades medicinais conhecidas

Um protocolo experimental utiliza a seguinte sequência de procedimentos:

- 1. Retirada de gema apical
- 2. Pré-tratamento com solução de sacarose
- 3. Desidratação
- 4. Congelamento em nitrogênio líquido
- 5. Aquecimento a 37°C
- 6. Cultivo em meio de cultura
- 7. Obtenção de planta completa

Esse protocolo refere-se ao seguinte método de conservação de germoplasma:

- a) conservação in situ
- b) conservação por crescimento lento
- c) criopreservação por congelamento lento
- d) criopreservação por congelamento rápido

26

O pH dos meios de cultura de células vegetais deve ser ajustado corretamente. Ao preparar um meio de cultura, um pesquisador observou que seu pH era de 7,0. Para que atinja o valor correto de 5,7, o ajuste deve ser feito pela adição de:

- a) HCI
- b) NaCl
- c) CaCl₂
- d) NaOH

27|

A obtenção de plantas transgênicas via Agrobacterium baseia-se no seguinte fato:

- a) regeneração de plantas a partir de tumores induzidos pela bactéria
- b) colonização permanente da planta pela bactéria, com a produção de nutrientes
- c) transferência, integração e expressão de um fragmento de DNA da bactéria (T-DNA) na planta
- d) transferência, integração e expressão de um fragmento de DNA da bactéria contendo oncogenes

28|

Para a utilização da capela de fluxo laminar, é indicado ligá-la 15 minutos antes do uso e, em seguida:

- a) flambar o material e ligar a lâmpada U. V.
- b) limpar com álcool 70% e ligar a lâmpada U. V.
- c) flambar o material e passar hipoclorito de sódio em algodão hidrófilo
- d) limpar com álcool 70% e passar hipoclorito de sódio em algodão hidrófilo

29|

No crescimento do material vegetal in vitro, são fatores de controle endógeno:

- a) temperatura, metabólico, ação antropogênica
- b) ação antropogênica, genético, hormonal
- c) metabólico, temperatura, genético
- d) genético, metabólico, hormonal

301

As barreiras de contenção primária protegem os profissionais de laboratório contra os agentes contaminantes. Essa proteção pode ser feita por meio de uso de equipamentos de proteção individual (EPI) e equipamentos de proteção coletiva (EPC).

Um EPC e um EPI indicados para a manipulação de um ácido são, respectivamente:

- a) respirador / protetor facial
- b) capela de exaustão / calçados
- c) capela de fluxo laminar / luvas
- d) centrífuga com copo de segurança / touca

31|

A técnica de micropropagação tem sido amplamente utilizada na produção de espécies ornamentais, frutíferas e florestais. Contudo, sua aplicação tem sido limitada devido aos custos de produção.

Em função dos custos, os itens que mais oneram sua aplicação são:

- a) equipamentos caros e substâncias importadas
- b) instalação de casas de vegetação e aclimatização das plantas
- c) mão de obra intensiva para repiques e perdas por contaminação
- d) espaço físico para manipulações assépticas e condições estéreis para manutenção do material

32|

No preparo de 1500 mL do meio basal de Murashige & Skoog (MS) a partir de uma mistura salina em pó contendo os macro e micronutrientes, devem ser adicionadas as vitaminas na concentração adequada. Para completar o preparo, é necessário ainda acrescentar sacarose na concentração final de 3%, e agar na concentração de 7 g.L⁻¹.

As quantidades de cada um desses componentes que devem ser adicionadas são, em gramas, respectivamente:

- a) 45 / 10,5
- b) 30 / 10,5
- c) 10,5 / 14
- d) 30 / 7

33|

Para avaliação do comportamento *in vitro* dos calos, um dos parâmetros considerados é o potencial morfogenético, que representa a capacidade de:

- a) gerar novas estruturas a cada subcultura
- b) gerar estruturas em intervalo de tempo conhecido
- c) reproduzir uma resposta vegetal durante as subculturas
- d) gerar estruturas independentemente do tempo de cultivo

34|

A embriogênese somática *in vitro* ocorre quando tecidos vegetais são cultivados em meio de cultura, principalmente em resposta a auxinas. A opção que indica corretamente o processo de embriogênese somática é:

- a) originam-se de embriões zigóticos, que se dividem, resultando na formação de múltiplos indivíduos
- b) desenvolvem a parte aérea da nova planta, sendo necessário o uso de um novo meio de cultura para a indução de raízes
- c) originam-se de células somáticas diferenciadas e possuem apenas o meristema primário responsável pela formação de raízes
- d) originam-se de células somáticas diferenciadas e possuem dois polos, cada um contendo meristemas responsáveis pela formação de um novo indivíduo

Os protocolos de conservação de germoplasma vegetal *in vitro* por meio de crescimento lento adotam o seguinte procedimento:

- a) transferências frequentes para meio fresco
- b) redução do tamanho dos explantes utilizados
- c) redução da temperatura, luminosidade e oxigênio
- d) aumento da aeração da cultura por meio de agitação

361

Entre os principais fatores que contribuem diretamente para a expressão da embriogênese somática, podem-se considerar os seguintes:

- a) genótipo, balanço de reguladores de crescimento, luz e temperatura
- b) uso de luz vermelha, genótipo, temperatura e manipulação de material
- c) luz, choque térmico, manipulação de material e número de experimentos realizados
- d) balanço de reguladores de crescimento, uso de luz vermelha, choque térmico e número de experimentos realizados

37

A embriogênese somática é a mais perfeita expressão da totipotência da célula vegetal. Quando essa via de regeneração *in vitro* é induzida, verifica-se que:

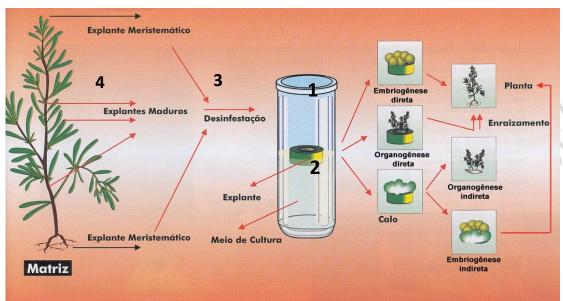
- a) a totipotência só ocorre em células altamente clorofiladas, porque utiliza a energia luminosa
- b) uma determinada célula recebe a mensagem para entrar em divisão mitótica, seguindo um padrão que vai originar uma estrutura bipolar
- c) a maioria das células do explante entra em um processo de divisão meiótica, de forma a originar uma estrutura semelhante a um embrião zigótico
- d) parte das células do explante diferencia-se para formar um endosperma, que vai fornecer os nutrientes necessários ao desenvolvimento do embrião

38|

Uma solução A de 30 mL de NaOH 2M foi misturada com 70 mL de uma solução B de NaOH 8M, obtendo-se 100 mL de uma solução final. Considerando o peso molecular de Na = 23, de O = 16 e H = 1, a molaridade da solução final terá o seguinte valor:

- a) 4,7 M
- b) 5,0 M
- c) 6,2 M
- d) 10 M

39


Para o estudo do efeito de uma droga em determinada cultura de células vegetais, a substância X foi submetida a diluições sucessivas. A cada diluição, a concentração da droga foi reduzida pela metade (diluição seriada 1:2) e diferentes concentrações foram adicionadas à cultura.

Supondo que a droga X estava originalmente a 800 mg/mL, e foi diluída cinco vezes, a menor concentração, em mg/mL, utilizada no estudo foi de:

- a) 20
- b) 25
- c) 50
- d) 100

40 Analise o esquema abaixo e responda à questão a seguir.

Fonte: Kerbauy, 1997 - google imagens

Assinale a opção que relaciona a numeração ao processo correspondente:

- a) 4 indica a formação de calos
- b) 3 assinala a ocorrência de organogênese indireta
- c) 2 indica a desinfestação do material
- d) 1 refere-se à embriogênese somática